Monday, November 24, 2014

11332 - Summing Digits

11332 - Summing Digits

Problem J: Summing Digits

For a positive integer n, let f(n) denote the sum of the digits of n when represented in base 10. It is easy to see that the sequence of numbers n, f(n), f(f(n)), f(f(f(n))), ... eventually becomes a single digit number that repeats forever. Let this single digit be denoted g(n).

For example, consider n = 1234567892. Then:

f(n) = 1+2+3+4+5+6+7+8+9+2 = 47
f(f(n)) = 4+7 = 11
f(f(f(n))) = 1+1 = 2

Therefore, g(1234567892) = 2.

Each line of input contains a single positive integer n at most 2,000,000,000. For each such integer, you are to output a single line containing g(n). Input is terminated by n = 0 which should not be processed.

Sample input
2
11
47
1234567892
0

Output for sample input
2
2
2
2



Zachary Friggstad

#include<stdio.h>
int main()
{
    char c[100];
    int i,f,fff,ff,a,bb,ccc,aa,b,cc;
    while(gets(c)!=EOF)
    {
        if(c[0]=='0')
        {
            break;
        }
        int sum=0;
    int l=strlen(c);
    for(i=0;i<l;i++)
    {
        sum=sum+c[i]-'0';
 
    }
    if(sum<10)
    {
        printf("%d\n",sum);
    }
    else
    {
        f=sum/10;
        ff=sum%10;
        fff=f+ff;
        if(fff<10)
    {
        printf("%d\n",fff);
    }
    else
    {
        a=fff/10;
        bb=fff%10;
        ccc=f+ff;
        if(ccc<10)
    {
        printf("%d\n",ccc);
    }
    else
    {
        aa=ccc/10;
        b=ccc%10;
        cc=aa+b;
        if(cc<10)
    {
        printf("%d\n",cc);
    }
    }
    }
    }
    }
    return 0;
 
}

11332 - Summing Digits uva link

No comments:

Post a Comment